11,804 research outputs found

    A Tight-Binding Investigation of the NaxCoO2 Fermi Surface

    Full text link
    We perform an orthogonal basis tight binding fit to an LAPW calculation of paramagnetic Nax_xCoO2_2 for several dopings. The optimal position of the apical oxygen at each doping is resolved, revealing a non-trivial dependence of the band structure and Fermi surface on oxygen height. We find that the small eg′_{g'} hole pockets are preserved throughout all investigated dopings and discuss some possible reasons for the lack of experimental evidence for these Fermi sheets

    A novel topology of high-speed SRM for high-performance traction applications

    Get PDF
    A novel topology of high-speed Switched Reluctance Machine (SRM) for high-performance traction applications is presented in this article. The target application, a Hybrid Electric Vehicle (HEV) in the sport segment poses very demanding specifications on the power and torque density of the electric traction machine. After evaluating multiple alternatives, the topology proposed is a 2-phase axial flux machine featuring both segmented twin rotors and a segmented stator core. Electromagnetic, thermal and mechanical models of the proposed topology are developed and subsequently integrated in an overall optimisation algorithm in order to find the optimal geometry for the application. Special focus is laid on the thermal management of the machine, due to the tough thermal conditions resulting from the high frequency, high current and highly saturated operation. Some experimental results are also included in order to validate the modelling and simulation results

    Sr2_2Cu(PO4_4)2_2: A real material realization of the 1D nearest neighbor Heisenberg chain

    Full text link
    We present evidence that crystalline Sr_2Cu(PO_4)_2 is a nearly perfect one-dimensional (1D) spin-1/2 anti-ferromagnetic Heisenberg model (AHM) chain compound with nearest neighbor only exchange. We undertake a broad theoretical study of the magnetic properties of this compound using first principles (LDA, LDA+U calculations), exact diagonalization and Bethe-ansatz methodologies to decompose the individual magnetic contributions, quantify their effect, and fit to experimental data. We calculate that the conditions of one-dimensionality and short-ranged magnetic interactions are sufficiently fulfilled that Bethe's analytical solution should be applicable, opening up the possibility to explore effects beyond the infinite chain limit of the AHM Hamiltonian. We begin such an exploration by examining some extrinsic effects such as impurities and defects

    Crew/computer communications study. Volume 1: Final report

    Get PDF
    Techniques, methods, and system requirements are reported for an onboard computerized communications system that provides on-line computing capability during manned space exploration. Communications between man and computer take place by sequential execution of each discrete step of a procedure, by interactive progression through a tree-type structure to initiate tasks or by interactive optimization of a task requiring man to furnish a set of parameters. Effective communication between astronaut and computer utilizes structured vocabulary techniques and a word recognition system

    Crew/computer communications study. Volume 2: Appendixes

    Get PDF
    The software routines developed during the crew/computer communications study are described to provide the user with an understanding of each routine, any restrictions in use, the required input data, and expected results after executing the routines. The combination of routines to generate a crew/computer communications application is also explained. The programmable keyboard and display used by the program is described, and an experiment scenario is provided to illustrate the relationship between the program frames when they are grouped into activity phases. Program descriptions and a user's guide are also presented. For Vol. 1, see N74-18843

    Entanglement between Collective Operators in a Linear Harmonic Chain

    Full text link
    We investigate entanglement between collective operators of two blocks of oscillators in an infinite linear harmonic chain. These operators are defined as averages over local operators (individual oscillators) in the blocks. On the one hand, this approach of "physical blocks" meets realistic experimental conditions, where measurement apparatuses do not interact with single oscillators but rather with a whole bunch of them, i.e., where in contrast to usually studied "mathematical blocks" not every possible measurement is allowed. On the other, this formalism naturally allows the generalization to blocks which may consist of several non-contiguous regions. We quantify entanglement between the collective operators by a measure based on the Peres-Horodecki criterion and show how it can be extracted and transferred to two qubits. Entanglement between two blocks is found even in the case where none of the oscillators from one block is entangled with an oscillator from the other, showing genuine bipartite entanglement between collective operators. Allowing the blocks to consist of a periodic sequence of subblocks, we verify that entanglement scales at most with the total boundary region. We also apply the approach of collective operators to scalar quantum field theory.Comment: 7 pages, 4 figures, significantly revised version with new results, journal reference adde

    Experimenter's Freedom in Bell's Theorem and Quantum Cryptography

    Full text link
    Bell's theorem states that no local realistic explanation of quantum mechanical predictions is possible, in which the experimenter has a freedom to choose between different measurement settings. Within a local realistic picture the violation of Bell's inequalities can only be understood if this freedom is denied. We determine the minimal degree to which the experimenter's freedom has to be abandoned, if one wants to keep such a picture and be in agreement with the experiment. Furthermore, the freedom in choosing experimental arrangements may be considered as a resource, since its lacking can be used by an eavesdropper to harm the security of quantum communication. We analyze the security of quantum key distribution as a function of the (partial) knowledge the eavesdropper has about the future choices of measurement settings which are made by the authorized parties (e.g. on the basis of some quasi-random generator). We show that the equivalence between the violation of Bell's inequality and the efficient extraction of a secure key - which exists for the case of complete freedom (no setting knowledge) - is lost unless one adapts the bound of the inequality according to this lack of freedom.Comment: 7 pages, 2 figures, incorporated referee comment
    • …
    corecore